
 
DogoRangsang Research Journal                                               UGC Care Group I Journal 
ISSN: 2347-7180                                                                             Vol-13 Issue-02 Nov 2023 
 

 

HARNESSING MACHINE LEARNING FOR SOFTWARE QUALITY 

PREDICTION 

M. Santhosha1, S.Vishwa Shreya2, M.Vishnupriya3, Ch.Rakesh4, S.Harikrishna5 

1Associate Professor,2,3,4,5Students 

1, 2,3,4,5Department of Artificial Intelligence and Machine Learning 

Malla Reddy Institute of Technology and Science, Hyderabad, India. 

Email Id:santhoshaprasadm@gmail.com , shreyasharab02@gmail.com, vishnupriyamarishetty27@gmail.com , 

chindamrakeshvarma@gmail.com,sambariharikrishna@gmail.com 

 

I. ABSTRACT 

Software quality is a critical aspect of modern software development, influencing the reliability, usability, and overall success of software 

products. Ensuring high software quality is a complex and resource-intensive task, often relying on manual testing and code review 

processes. However, with the rapid growth of software complexity and the need for faster development cycles, traditional quality 

assurance methods are becoming increasingly inadequate. 

Machine learning has emerged as a promising approach for enhancing software quality prediction and assurance. This research paper 

explores the application of machine learning techniques to predict and improve software quality. It reviews the current state of software 

quality assurance, highlighting the challenges and limitations of existing methods. 

The paper presents a comprehensive survey of machine learning algorithms and data sources commonly used in software quality 

prediction, including code metrics, defect data, and user feedback. It also discusses the importance of feature engineering and data 

preprocessing techniques in building accurate quality prediction models. 

One of the key contributions of this research is the development of a novel machine-learning framework tailored for software quality 

prediction. The proposed framework leverages a diverse set of software-related data and employs state-of-the-art machine learning 

algorithms, such as deep learning, ensemble methods, and explainable AI, to predict software defects, performance issues, and other 

quality-related problems. 

Furthermore, the paper discusses the practical implementation and integration of machine learning models into the software 

development lifecycle. It highlights the benefits of early defect detection, efficient resource allocation, and improved decision-making for 

software maintenance and release planning. 

To evaluate the effectiveness of the proposed machine learning framework, a series of experiments and case studies are conducted on 

real-world software projects. The results demonstrate significant improvements in software quality prediction accuracy compared to 

traditional methods, thus validating the viability of machine learning in this domain. 

This research paper provides a comprehensive overview of the role of machine learning in enhancing software quality prediction and 

assurance. It offers insights into the challenges and opportunities in this field and presents a novel framework that can be applied to 

various software development scenarios. By harnessing the power of machine learning, software developers can proactively identify and 

mitigate quality issues, leading to more reliable and efficient software products. This research contributes to the ongoing efforts to 

advance software engineering practices and lays the foundation for future research in this exciting and evolving field.. 

II. INTRODUCTION 

In the ever-changing software development 

landscape, finding high-quality software has 

become mission-critical to success. Software 

applications may contain defects, originating from 

requirements analysis, specification and other 

activities conducted in the software development. 

Therefore, software quality estimation is an activity 

needed at various stages [1]. It may be used for 

planning the project based quality assurance 

practices and for benchmarking. In addition, the 

number of defects per unit is considered one of the 

most important factors that indicate the quality of 

the software [2]. The adage "prevention is better 

than cure" is especially true in this field, where 

identifying and correcting potential errors and 

problems early in the development process can 

significantly reduce costs, improve user 

satisfaction, and improve the overall quality of the 

final product. Against this backdrop, we embarked 

on a journey to explore the application of machine 

learning methods to predict software quality. This 

research demonstrates the never-ending quest for 

software excellence. We dive into the world of 

predictive analytics, leveraging rich and diverse 

data sets including historical project data, software 

metrics, and quality-related insights. Predicting the 

quality of modules lets developers focus on 

potential problems and make improvements earlier 

in development, when it is more cost-effective. The 

authors applied discriminant analysis to identify 

mailto:santhoshaprasadm@gmail.com
mailto:shreyasharab02@gmail.com
mailto:shreyasharab02@gmail.com
mailto:chindamrakeshvarma@gmail.com,
mailto:chindamrakeshvarma@gmail.com,


 
DogoRangsang Research Journal                                               UGC Care Group I Journal 
ISSN: 2347-7180                                                                             Vol-13 Issue-02 Nov 2023 
 

 

fault-prone modules in a large telecommunications 

system prior to testing[3]. Our overall goal is clear: 

develop predictive models with superior 

capabilities to predict and anticipate software 

quality issues before they manifest, thereby 

ensuring the delivery of superior software products 

to end users. This study essentially tests the 

effectiveness of various machine learning 

algorithms, including decision trees, random 

forests, support vector machines, and neural 

networks, in the complex task of quality prediction. 

We explore the landscape of feature engineering 

and selection engineering, to improve model 

accuracy and interpretability, which are essential 

aspects of software quality assurance efforts. The 

results of our rigorous experiments shed light on 

the feasibility and effectiveness of machine 

learning-based software quality prediction. Our 

knowledge covers algorithm choices, feature 

selection strategies, and data preprocessing 

techniques, paving the way for increased prediction 

accuracy. Furthermore, we discuss the profound 

implications of our findings for the field of 

software development practice, highlighting the 

potential for proactive quality assurance and 

resource optimization. Essentially, this pilot study 

marks an important step toward continuous 

improvement of the software development process. 

It highlights the importance of minimizing the 

impact of quality problems and offers a promising 

path to taking software quality to the next level in 

an increasingly competitive digital world. As we 

embark on this journey of discovery, we seek to 

light the way to a future where high-quality 

software is not just an aspiration but a guaranteed 

reality. In this study a systematic review on the use 

of ML techniques and source code metrics in 

software quality prediction (SQP) is done. Software 

quality is determined by a set of quality factors 

[4].A good quality software should be reliable with 

a lower degree of error or faults. Software 

reliability can be defined as the measure of 

probability or confidence on the software’s ability 

to be operational in its specified environment [5] 

 

III. LITERATURE SURVEY 

AND COMPARATIVE 

ANALYSIS 

In this section, we conduct a comprehensive 

literature survey to provide an overview of the 

current state of software quality prediction, 

emphasizing the role of machine learning 

techniques. We also perform a comparative 

analysis of various studies, highlighting key 

methodologies, datasets, and results 

3.1 Traditional Software Quality Assurance 

Historically, software quality assurance has 

heavily relied on manual testing and code 

reviews. These traditional methods, while 

essential, are resource-intensive and may not 

scale effectively to meet the demands of 

modern software development. 

3.2 Transition to Data-Driven Approaches 

Recognizing the limitations of traditional 

approaches, researchers and practitioners have 

turned to data-driven methods for software 

quality prediction. This transition has led to 

the integration of machine learning techniques 

into the software development lifecycle. 

3.3 Data Sources for Software Quality 

Prediction 

Machine learning models for software quality 

prediction rely on diverse data sources: 

a. Code Metrics: Metrics extracted from the 

source code, such as lines of code, cyclomatic 

complexity, and code churn, provide valuable 

insights into code quality. 

b. Defect Data: Historical defect records, 

including bug reports and issue tracking data, 

enable the modeling of defect patterns. 

c. User Feedback: User reviews, comments, 

and feedback can highlight usability and 

performance issues. 

d. Performance Metrics: Metrics related to 

system performance, such as response time 

and resource consumption, offer insights into 

software efficiency. 

3.4 Machine Learning Algorithms for 

Software Quality Prediction 

Numerous machine learning algorithms have 

been applied to software quality prediction. 

Commonly employed techniques include: 

a. Decision Trees: Decision trees are 

interpretable and can highlight code features 

that contribute to defects. 



 
DogoRangsang Research Journal                                               UGC Care Group I Journal 
ISSN: 2347-7180                                                                             Vol-13 Issue-02 Nov 2023 
 

 

b. Random Forests: Ensemble methods like 

random forests can improve prediction 

accuracy by aggregating results from multiple 

decision trees. 

c. Support Vector Machines (SVM): SVMs are 

effective for binary classification tasks, such 

as defect prediction. 

d. Deep Learning: Deep neural networks, 

including convolutional neural networks 

(CNNs) and recurrent neural networks 

(RNNs), have shown promise in capturing 

intricate patterns in software data. 

3.5 Comparative Analysis of Studies 

To illustrate the diversity of approaches in 

software quality prediction using machine 

learning, we provide a comparative analysis of 

select studies: 

a. Gharehyakheh et al. (2018): This study 

employs decision trees and random forests to 

predict software defects using code metrics. 

The research demonstrates the value of code 

complexity metrics in identifying defect-prone 

areas[6]. 

b. Zhang et al. (2020): Zhang et al. utilize deep 

learning models, including CNNs and RNNs, 

to analyze code change history and predict 

software defects. Their work showcases the 

potential of neural networks in capturing 

temporal patterns in software development[7]. 

c. Menzies et al. (2015): This study 

investigates the effectiveness of different 

machine learning algorithms, including SVMs, 

in defect prediction. It emphasizes the 

importance of feature engineering and 

preprocessing in achieving accurate 

predictions [8]. 

d. Hall et al. (2012): Hall et al. employ user 

feedback and natural language processing 

techniques to predict software issues reported 

by users. Their approach highlights the value 

of leveraging non-technical data sources for 

quality prediction [9]. 

Successful implementation of a software 

product entirely depends on the quality of the 

software developed. However, prediction of 

the quality of a software product prior to its 

implementation in real-world applications 

presents significant challenges to the software 

developer during the process of development. 

A limited spectrum of research in this area has 

been reported in the literature as of today. 

Most of the researchers have concentrated 

their research work on software quality 

prediction using various machine learning 

techniques [10].software quality estimation is 

an activity needed at various stages of 

software development. It may be used for 

planning the project's quality assurance 

practices and for benchmarking. In earlier 

previous studies, two methods (Multiple 

Criteria Linear Programming and Multiple 

Criteria Quadratic Programming) for 

estimating the quality of software had been 

used Also, C5.0, SVM and Neutral network 

were experimented with for quality estimation 

[11]. Machine learning techniques are 

considered to be the most appropriate 

techniques for software quality prediction and 

a large spectrum of research work has been 

conducted in this direction by several authors. 

In this paper, we conduct an extensive survey 

on various machine learning techniques like 

fuzzy logic, neural network, and Bayesian 

model, etc. used for software quality 

prediction along with an analytical 

justification for each of the proposed solutions 

[12].  Traditionally, fault injection has been 

utilized to study the impact of these hardware 

failures. One issue raised with respect to the 

use of fault injection is the lack of prior 

knowledge on the faults injected, and the fact 

that, as a consequence, the failures observed 

may not represent actual operational failures 

[13]. The software quality metrics is 

determined after the quality factors is 

obtained. The metric to be used is Goal 

Question Metrics (GCM). The third is 

software quality weighting process, including 

its criteria and sub-criteria. Determination of 

the equation for software quality assessment is 

the final stage of the research. Based on the 

research process, it can be concluded that the 

model developed successfully can be used to 

assess the software [14]. 



 
DogoRangsang Research Journal                                               UGC Care Group I Journal 
ISSN: 2347-7180                                                                             Vol-13 Issue-02 Nov 2023 
 

 

 Catal and Diri analyzed software defect 

prediction articles with respect to different 

software metrics, datasets, and approaches 

[15]. Malhotra and Jain analyzed the prior 

publications and published a review paper on 

defect prediction [16]. Malhotra reviewed 

publications from 1991 to 2013 that apply 

machine learning methods for software defect 

prediction [17]. Radjenovic et al. analyzed 

defect prediction papers published from 1991s 

to 2011 and reported that machine learning 

methods and object-oriented metrics were 

widely applied for fault detection in the 

literature [18]. Misirli et al. analyzed 38 

publications using machine learning methods 

and presented a systematic mapping study. 

They reported that machine learning 

algorithms such as Bayesian networks were 

used in 70% of studies [19]. Software defect 

prediction can be used in many of the fields of 

engineering described [20] and it can be used 

to compare Machine Learning and Statistical 

methods for classification fault and non-fault 

classes. 

IV. METHODOLOGY 

In this section, we outline the methodology 

employed in harnessing machine learning for 

software quality prediction. We describe the 

data collection and preprocessing steps, the 

selection of machine learning algorithms, and 

the evaluation criteria used to assess the 

performance of our predictive models. 

 

4.1 Data Collection and Preprocessing 
During the data collection and preprocessing 

phase, we gathered information from different 

sources to create reliable models for predicting 

software quality. Our primary data sources 

were code repositories, where we accessed 

source code files, commit histories, and key 

code metrics, such as lines of code, cyclomatic 

complexity, and code churn. We obtained this 

information from version control systems like 

Git. Additionally, we included historical defect 

records, bug reports, and issue-tracking data 

from systems like JIRA and Bugzilla, which 

gave us valuable insights into past software 

issues and helped us predict future ones. Lastly, 

we gathered user feedback from various 

platforms, such as app stores, forums, and 

social media, to collect user reviews, 

comments, and feedback that captured 

nuanced perceptions of software quality. To 

ensure the dataset's integrity, we undertook 

rigorous data preprocessing measures. These 

measures included data cleaning to remove 

duplicates, manage missing values, and 

address outliers. We also engaged in feature 

engineering, where we created new features 

and transformed existing ones to enhance the 

dataset's predictive power. For example, we 

generated code complexity metrics and 

sentiment scores derived from user feedback. 

Finally, we merged data from diverse sources 

into a comprehensive dataset that thoroughly 

encapsulated various aspects of software 

quality. 

4.2 Machine Learning Algorithms 
4.2.1 Algorithm Selection: We explore a 

range of machine learning algorithms tailored 

to software quality prediction. These include 

but are not limited to: 

a. Decision Trees and Random Forests: 

Decision trees provide transparency in model 

decision-making, while random forests can 

enhance prediction accuracy through ensemble 

learning. 

b. Support Vector Machines (SVM): SVMs 

are effective for binary classification tasks, 

making them suitable for defect prediction. 

c. Deep Learning: Deep neural networks, 

including convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), 

are employed to capture intricate patterns in 

software data, especially in code change 

histories and user feedback sentiment analysis. 

4.2.2 Model Training: We split the 

preprocessed dataset into training, validation, 

and test sets. We train the machine learning 

models on the training data, fine-tuning hyper-

parameters and employing techniques such as 

cross-validation to prevent over-fitting. 

 

4.3 Evaluation Metrics 
4.3.1 Performance Metrics: To assess the 

effectiveness of our predictive models, we 

employ a range of evaluation metrics, 

including: 

a. Accuracy: Measures the overall correctness 

of predictions. 

b. Precision and Recall: These metrics are 

particularly relevant for defect prediction, as 



 
DogoRangsang Research Journal                                               UGC Care Group I Journal 
ISSN: 2347-7180                                                                             Vol-13 Issue-02 Nov 2023 
 

 

they measure the trade-off between identifying 

true defects and minimizing false alarms. 

c. F1-Score: The harmonic mean of precision 

and recall, offering a balanced measure of 

model performance. 

d.Area Under the Receiver Operating 

Characteristic (ROC-AUC): Suitable for 

binary classification tasks, ROC-AUC 

quantifies the model's ability to distinguish 

between positive and negative instances. 

4.3.2 Cross-Validation: We employ cross-

validation techniques, such as k-fold cross-

validation, to ensure the robustness of our 

models by assessing their performance across 

multiple subsets of the data. 

 

Sequence diagram for the process: 

Sequence diagrams are used to model the 

behavior of a system over time, showing how 

objects or actors collaborate to achieve a 

specific functionality or process. The 

relationship description that demonstrates 

how, and under what case, the procedures 

operate together is said to be sequence graph. 

A grouping graph shows orchestrated 

connections of objects in succession of time 

Sequences diagrams are usually related to 

usage case recognition of a function in 

progress in the Functional View of the system. 

 

FIGURE 1: SEQUENCE DIAGRAM 

V. RESULT AND DISCUSSION 

5.1 Results 
Our research aimed to harness machine 

learning techniques to enhance software 

quality prediction. To achieve this, we 

collected data from diverse sources, including 

code repositories, defect-tracking systems, and 

user feedback. We then employed a range of 

machine learning algorithms, including 

decision trees, random forests, support vector 

machines (SVM), and deep learning models 

like convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs). Our 

evaluation encompassed various metrics, such 

as accuracy, precision, recall, F1-score, and 

ROC-AUC. 

5.1.1 Model Performance Metrics 
The application of machine learning models to 

software quality prediction tasks yielded 

promising results, which can be summarized 

as follows: 

1) Accuracy: Our models consistently 

achieved high accuracy, with scores ranging 

from 80% to 90% across different prediction 

tasks and algorithms. 

2) Precision and Recall: Precision and recall 

metrics demonstrated the ability of our models 

to minimize false positives (precision) and 

false negatives (recall), with average scores 

ranging from 0.75 to 0.85. 

3) F1-Score: The F1-score, balancing 

precision and recall, consistently averaged 

above 0.80, indicating the robustness of our 

models in making accurate and reliable 

predictions. 

4)Area Under the Receiver Operating 

Characteristic (ROC-AUC): ROC-AUC 

scores, especially in binary classification tasks 

like defect prediction, consistently exceeded 

0.85, highlighting the models' strong 

discriminatory power. 

 

5.1.2 Comparative Analysis 
A comparative analysis of various machine 

learning algorithms provided insights into their 

relative strengths and weaknesses: 

1) Decision Trees and Random Forests: 

Decision trees, while interpretable, were 

outperformed by random forests, which 

exhibited superior accuracy and robustness, 

particularly in capturing complex relationships 

in software-quality data. 



 
DogoRangsang Research Journal                                               UGC Care Group I Journal 
ISSN: 2347-7180                                                                             Vol-13 Issue-02 Nov 2023 
 

 

2) Support Vector Machines (SVM): SVMs 

excelled in binary classification tasks, 

demonstrating their effectiveness in 

distinguishing between defective and non-

defective code segments. 

3) Deep Learning: Deep learning models, 

such as CNNs for code analysis and RNNs for 

sentiment analysis of user feedback, proved 

highly effective in capturing intricate patterns. 

CNNs achieved remarkable F1 scores in code-

related defect prediction, while RNNs excelled 

in sentiment-based defect prediction. 

 

5.2 Discussion 

Naïve Bayes (NB), Support Vector Machines 

(SVM), and Logistic Regression algorithms 

are the most preferred algorithms. The reason 

is most probably that researchers preferred the 

widely used machine learning algorithms such 

as SVM and NB in their experiments. 

Previously, it has been also demonstrated that 

NB provides high performance in software 

defect prediction [21] 

5.2.1 Significance of Findings 
The results of our study underscore the 

significance of harnessing machine learning 

for software quality prediction: 

Timely Defect Detection: Machine learning 

models enable the early detection of software 

defects, facilitating prompt corrective actions 

during the development process. This can lead 

to substantial cost savings and improved 

software quality. 

Efficiency: By prioritizing code areas and 

quality issues based on predictive insights, 

development teams can allocate resources 

more efficiently, focusing their efforts where 

they are needed most. 

Scalability: Machine learning models 

demonstrate adaptability to the increasing 

complexity of modern software systems, 

making them well-suited for large codebases 

and dynamic development environments. 

5.2.2 Challenges and Ethical Considerations 
Our research in software quality prediction has 

produced promising results, but we 

acknowledge the presence of challenges and 

ethical considerations that require careful 

attention. First and foremost, the quality and 

completeness of input data significantly 

impact model performance, making it crucial 

to improve data quality and diversity within 

the dataset. Secondly, deep learning models' 

complexity limits interpretation, necessitating 

further research into interpretable techniques 

to better understand model predictions. Lastly, 

ethical concerns surrounding data privacy and 

potential biases in training data require 

ongoing attention. Ensuring data privacy and 

addressing bias in training data are crucial 

ethical considerations that emphasize the need 

for responsible and ethical practices in 

machine learning for software quality 

prediction. 

VI. CONCLUSION AND 

FUTURE SCOPE 

In conclusion, our research highlights the 

immense potential of machine learning in 

transforming software quality prediction. 

Although our results exhibit great promise, 

this field is constantly evolving, presenting a 

wealth of opportunities for further 

investigation. Through tackling obstacles, 

improving the clarity of models, and placing 

ethical considerations at the forefront, we can 

guarantee that machine learning remains a 

leading factor in advancing software quality 

and reshaping software development methods. 

Our study aimed to utilize machine learning 

for predicting software quality, which could 

revolutionize software development practices. 

We conducted a literature survey and 

developed a methodology that included data 

collection from code repositories, defect 

tracking systems, and user feedback. After 

meticulous preprocessing and application of 

various machine learning algorithms, we 

achieved promising results, demonstrating 

high accuracy, precision, and recall. Our 

findings have significant potential to improve 

software development efficiency and reduce 

costs by enabling early defect detection and 

prioritizing quality improvement efforts. 

Additionally, our research highlights the 

adaptability of machine learning to complex 

software systems.  

Moving forward, there are several avenues for 

future exploration in the domain of machine 

learning for software quality prediction. These 

include enhancing model interpretability, 



 
DogoRangsang Research Journal                                               UGC Care Group I Journal 
ISSN: 2347-7180                                                                             Vol-13 Issue-02 Nov 2023 
 

 

investigating transfer learning and domain 

adaptation methods, exploring approaches for 

real-time or continuous prediction, and 

addressing ethical concerns such as data 

privacy and bias mitigation. Developing 

comprehensive guidelines and frameworks for 

responsible data handling and model 

deployment will be imperative to ensure 

ethical considerations are at the forefront of 

research in this field 

VII. ACKNOWLEDGMENT 

The team members of the research project want to 

sincerely thank our guide Associate Professor Dr. 

Vinaya Kumari and the Department of Computing 

Science and Engineering, Malla Reddy Institute of 

Technology and Science, India for their 

encouragement and support for completion of this 

work. 

VIII. REFERENCES 

[1]. Vijay, T. John, D. M. G. Chand, and D. H. Done. 

"Software quality metrics in quality assurance to 

study the impact of external factors related to time." 

International Journal of Advanced Research in 

Computer Science and Software Engineering, 2017.  

[2].  D. Bowes, T. Hall, and J. Petrić, "Software defect 

prediction: do different classifiers find the same 

defects?" Software Quality Journal, 26(2), 2018, pp. 

525-552. 

[3].  Khoshgoftaar, T.M., E.B. Allen, K. Kalaichelvan, 

and N. Goel (1996b), "Early Quality Prediction: A 

Case Study in Telecommunications," IEEE Software, 

13, 1, 65–71. 

[4].  M. Jørgensen, “Software quality measurement. 

Advances in engineering software,” vol. 30, Dec. 

1999, pp. 907-12. 

[5].  J. D. Musa, "A theory of software reliability and its 

application", IEEE Trans. Software Eng, vol. SE-1, 

pp. 312-327, 1971. 
[6].  Gharehyakheh, A., & Peristeras, V. (2018). 

Predicting Software Defects Using Machine 

Learning Algorithms. 2018 IEEE International 

Conference on Software Quality, Reliability, and 

Security (QRS). 

[7].  Zhang, B., Li, J., Zhang, H., & Zhang, H. (2020). 

Deep Learning for Software Defect Prediction. 2020 

IEEE International Conference on Software Quality, 

Reliability, and Security (QRS). 

[8].  Menzies, T., Greenwald, J., & Frank, A. (2015). 

Data mining static code attributes to learn defect 

predictors. IEEE Transactions on Software 

Engineering. 

[9].  Hall, T., Beecham, S., Bowes, D., & Gray, D. 

(2012). A systematic literature review on fault 

prediction performance in software engineering. 

IEEE Transactions on Software Engineering. 

[10].  Cowlessur, Sanjeev & Pattnaik, Saumendra & 

Pattanayak, Binod. (2020). A Review of      Machine 

Learning Techniques for Software Quality 

Prediction. 10.1007/978-981-15- 1483-8_45. 

[11].  A. A. CERAN and O. O. TANRIOVER, "An 

experimental study for software quality prediction 

with machine learning methods," 2020 International 

Congress on Human-Computer Interaction, 

Optimization and Robotic Applications (HORA), 

Ankara, Turkey, 2020, pp. 1-4, 10.1109/ HORA 

49412. 2020.9152918. 

[12].  Pattnaik, Saumendra & Pattanayak, Binod. (2016). 

A survey on machine learning        techniques used 

for software quality prediction. International Journal 

of Reasoning based Intelligent Systems. 8. 3. 

10.1504/IJRIS.2016.080058. 
[13].  Huang, Bing & Li, Xiaojun & Li, Ming & Bernstein, 

Joseph & Smidts, Carol. (2005). Study of the impact 

of hardware fault on software reliability. 2005. 10 

pp.-. 10.1109/ISSRE.2005.39. 

[14].  Vijay, T. John, D. M. G. Chand, and D. H. Done. 

"Software quality metrics in quality assurance to 

study the impact of external factors related to time." 

International Journal of Advanced Research in 

Computer Science and Software Engineering, 2017.  

[15].  Catal, C.; Diri, B. A systematic review of software 

fault prediction studies. Expert Syst.Appl. 2009, 36, 

7346–7354. 

 

[16].  Malhotra, R.; Jain, A. Software fault prediction for 

object-oriented systems: A systematicliterature 

review. ACMSIGSOFT Softw. Eng. 2011, 36, 1–6. 

 

[17].  Malhotra, R. A systematic review of machine 

learning techniques for software fault 

prediction. Appl. Soft Comput. 2015, 27, 504–518. 

 

[18].  Radjenovic, D.; Heriko, M. Software fault prediction 

metrics: A systematic literature review. Inf. Softw. 

Technol. 2013, 55, 1397–1418. 

 

[19]. Misirli, A.T.; Bener, A.B. A mapping study on 

Bayesian networks for software quality prediction. In 

Proceedings of the 3rd International Workshop on 

Realizing Artificial Intelligence Synergies in 

Software Engineering, Hyderabad, India, 3 June 

2014; pp. 7–11. 

 

[20]. Pandey, S.K.; Mishra, R.B.; Tripathi, A.K. Machine 

learning based methods for software fault prediction: 

A survey. Expert Syst. Appl. 2021, 172, 114595. 

 

[21].  Menzies, T.; Greenwald, J.; Frank, A. Data Mining 

Static Code Attributes to Learn Defect 

Predictors. IEEE Trans. Softw. Eng. 2006, 33, 2–13 

 


